Free
Message: Suddenly hot smart home devices are ripe for hacking, experts warn

Systems, apparatuses and methods are described for creating security information using sensors. The security information may be collected independently between at least two devices. The security information may be filtered by communicating portions of the security information between the devices until a statistical match exists. The remaining non-communicated security information on the at least two devices may then be used for any security related applications.

 

The computer readable medium of claim 17, wherein the security information is used for any combination of the following: an application that uses secure data, sessions keys, authorization, personal signing, digital signatures, encryption keys, security keys, authentication, access, physical access, system or data access, codes, online access, computer log in, data protection, encryption, decryption, Advanced Encryption Standard (AES), Data Encryption Standard (DES), Public Key Infrastructures (PKI), and One-Time-Pads (OTP).

 

 Some of the most difficult encryptions to break use randomness in some form. The basic principal being that randomness can increase the amount of computation power, termed the "work factor" by Claude Shannon, needed to decrypt. For example, a well known symmetric key encryption based on randomness is called the Vernam's stream cipher. This cipher can be proven to be secure against any adversary no matter how much computing power is available if correctly implemented. 

 

Needless to say, with the advent of the digital age, the need for robust security and authentication has greatly increased. In conjunction, the complexity of encryption and decryption has also increased. Consumers today engage in many financial transactions online. Sensitive medical information is stored and transmitted electronically. Businesses want to transact negotiations or mergers securely to prevent competitors from knowing. Companies want their employees to be able to log into their networks securely from home.

 

 Consumers need to be able to know that their information is secure and that only the intended receiver is viewing the information. Computers can make codes more complex and more difficult to break, but at the same time enabling hackers with powerful code breaking tools. 

For example, computer processing power can help break codes through "brute-force." A brute-force attack uses the speed of computers to try each of the variations to find the key. A computer can run through the possibilities much faster than a person could by hand. Protecting the key is also important. If you can get ahold of the key, then you can easily decrypt the message. So methods that send a key or expose parts of the key to third parties are weaker systems. Some codes have been broken because parts of the keys were exposed. So protecting the keys from third party exposure, may help strengthen the code. 

 For example, the secure data may be non-communicated between devices. This secure data may be used for a variety of security applications. For example, the security information may be used for, but not limited to, any application that uses random data, sessions keys, personal/authorization signing, digital signatures, encryption keys, security keys, codes, authentication, access, physical access, system or data access, online access, computer log in, data protection, encryption applications like Advanced Encryption Standard (AES), Data Encryption Standard (DES), One-Time-Pads (OTP), or for any application in which security and/or authentication is desired. 

 

A sensor may include any device or mechanism capable of detecting, measuring, transducing, or recording some physical attribute. For example, a photoresistor is a sensor that detects light and changes its resistance accordingly. The following are examples of commonly used sensors that may be used in the embodiment(s), but this list is not inclusive, any sensor may be used: chemical, detectors, motion, microphones, speakers, cameras, optical, location, accelerometers, angle, audio, biometric, physiological, respiratory, capacitance, density, displacement, distance, electric current, electric potential, energy, force, gravity, gyroscopic, infrared, heart rate, humidity, imaging, level, linear acceleration, light, moisture, magnetic field, navigation, ranging, orientation, photon, position, presence, radiation, radio, speed, thermal, pressure, vector rotation, proximity, voice, speech patterns, phoneme, subatomic particles, temperature, user input, ultrasound, ultraviolet, ultra wideband, usage, vibration, video, or any combination therein. 

The system, method, and apparatus described in the embodiment(s) may be used for a variety of applications. In an embodiment, the secure data may be used to encrypt and decrypt data. In an embodiment, the secure information may be used to encrypt hard drives, files, disks, folders, thumb drives, external memory devices, emails, voice, text messages, personal data, databases, medical information, bank accounts, bank information, or any application where privacy of information may be desired. In an embodiment the security information may be used as an encryption key, a vehicle key, a session key, a password, access key, an electronic car key, a key fob, a digital signature, a digital seal, or to authenticate the sender (author). The embodiment(s) may be used between peers as in a peer-to-peer communication, as security for wireless networks (WiFi, WLAN, PANs, or the like), by a group of users or digital community, for base station accessing or device paring, for upper or MAC layer security and accessing protocols, or any application were security, and/or authenticity may be desired.

 

Furthermore, the purpose of the foregoing Abstract is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientists, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The Abstract is not intended to be limiting as to the scope of the described embodiments in any way. It is also to be understood that the steps and processes recited in the claims need not be performed in the order presented.

Share
New Message
Please login to post a reply